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Abstract
An efficient computational method for finding the equilibrium concentration profiles which
minimize the free energy of intermixed heteroepitaxial islands of assigned shape and average
composition is described. A combination of a Monte Carlo method and continuum elasticity
theory solved by a finite element method is shown to provide the desired profiles allowing for a
significant computational gain with respect to atomistic approaches. The role played by
dimensionality (ridges versus islands) and by entropy is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last few years several experimental papers reporting
Ge/Si intermixing profiles in heteroepitaxial Ge islands
grown on Si(001) substrates by molecular beam epitaxy or
chemical vapor deposition appeared in very high impact-factor
journals [1–6] (for a review including a discussion of earlier
studies, see [7] and references therein). The ability to link the
experimental data to actual three-dimensional distributions of
Ge and Si atoms within the islands yielded very impressive
results. The main driving force for intermixing is clear:
while island formation is determined by the attempt to release
the strain unavoidably associated with a Ge wetting layer
(WL), considerable residual elastic energy remains stored even
in the presence of three-dimensional structures, particularly
those close to the base of the Ge islands (see, e.g. [8]). Si
injection provides a channel for the effective lowering of the
lattice mismatch and thus of the stress load. While at low
temperatures this process is inhibited or very slow, in the full
temperature range explored in the above experiments (T �
500 ◦C) it is known that the kinetics of Ge/Si exchanges at the
Si(001) surface is fast [9]. Theoretical estimations of the actual
Si versus Ge flux arriving at islands, and of the incorporation
rate of Si still require further study.

Elastic-energy minimization, however, is not the only
effect which should be considered. Since sufficiently high

temperatures are needed for observing Si/Ge intermixing,
entropy must also be taken into account (enthalpy of mixing
in Si/Ge systems is believed to be rather negligible [10, 4]).
This leads to two opposite driving forces. Elastic-energy
minimization will drive the system towards a strongly non-
uniform Si distribution, as a direct consequence of the
strongly non-uniform strain distribution within the island [8],
facilitating Si incorporation at the compressed base, while
leaving almost pure Ge at the relaxed top. Entropy, on the
other hand, pushes the system towards uniform alloying. The
most direct computational method for building a theoretical
understanding of the interplay of these contributions is given
by Monte Carlo (MC) simulations within a semiempirical-
potential atomistic approach [11–14]. In the MC simulations,
the typical Metropolis move is given by a random exchange of
atomic species, acceptance being controlled by the Boltzmann
statistical weight. Provided that the potential nicely reproduces
the experimental elastic constants, this approach allows one to
minimize the free energy of the system. The main problem,
however, is that convergence is extremely slow, ruling out the
possibility of considering realistically sized islands containing
more than ∼104 atoms.

In an attempt to speed up the calculation of the
concentration profile minimizing the free energy, we have
developed a fast, fully self-consistent method based on a
combination of Monte Carlo and continuum elasticity theory,
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solved by finite element methods (FEM). In [15] the method
was described and applied solely to energy minimization; here
we provide an extension to finite temperatures, by including
entropic effects. It is worth noticing that another group has also
very recently introduced an FEM-based method [16] to search
for optimal concentration profiles. We believe our treatment
to be simpler, also including a more direct treatment of the
entropic term. Still, results seem to be fully comparable, so
the two methods should be regarded as different alternatives
available for fast minimization of the free energy of an island
with a given shape and average composition.

2. Methodology

Our method is rather general and can be used for any functional
minimization, but here we shall describe it as applied to finding
the Ge concentration profile of binary Ge/Si nanoislands
that minimizes the elastic energy. Also, later in the paper,
minimization of a simple approximate functional for the free
energy is discussed.

The profile is represented by linearly interpolated values
of Ge molar fractions at vertices of a relatively coarse
tetrahedral (triangular in 2D) mesh in the same way as in an
FEM with linear shape functions. Typically a much finer mesh
is used for solving the elastic problem [15]. We minimize
the energy functional with respect to the composition profile
(with a constraint of given fixed average Ge fraction) by a
special version of the Monte Carlo (MC) method. Any other
minimization method that does not need derivatives could be
used instead but, due to the large number of unknown variables
and to the constraints which must be considered, we have found
that common minimization methods using searches are in our
case less efficient.

The standard Metropolis Monte Carlo involves an ergodic
Markov chain whose stationary distribution ρ is taken to
be the Boltzmann distribution [17]. In the simplest form
a trial move from state o to state n is selected uniformly
at random and accepted with probability min(1, ρn/ρo) =
min(1, exp(−(En − Eo)/(kT ))), where E is energy, T
thermodynamic temperature and k the Boltzmann constant. If
the fraction of accepted moves is too low, the method becomes
inefficient. An important extension that tries to overcome this
limitation is the configuration-bias MC [17], known in many
different particular forms as preferential sampling, force-bias
MC, smart MC and others. The Markov chain is generated
by making trial moves from state o to state n according
to probabilities αon and accepting them with probability
min(1, αnoρn/(αonρo)). The stationarity is guaranteed even for
αon �= αno.

The MC procedure can be an efficient way to explore a
many-dimensional configurational space. In our case we use it
for minimization of a many-dimensional function E by taking
the limit T → 0+ as in the simulated annealing method
(SA) [18]. If the temperature is decreased slowly enough,
it can be shown that the probability that SA finds the global
minimum goes to 1. However, the known lower bounds on
the annealing temperature schedule are rather impractical. In
our case we always observed the existence of only a single

minimum, allowing us to simply keep T = 0 and take only
down-hill steps. For more a complicated energy landscape with
several local minima one can always revert back to SA.

An essential ingredient of any MC is the generation of trial
moves. Here we use a simple exchange of a certain amount
of Ge between two vertices satisfying necessary constraints.
For the molar fraction x it must always hold that x � 0
and x � 1. Also, as the tetrahedra of the mesh are not all
the same, different vertices have different geometrical weights
with which they contribute to the overall concentration profile.
The weight of a particular vertex can be easily calculated by
taking the volume integral of a profile that is zero everywhere
except for the given node, where it is equal to 1. We also
need to satisfy the constraint of a constant overall average
Ge molar fraction. Due to linearity of shape functions, all
these constraints can be easily fulfilled and they only limit the
possible values of the Ge exchange to some eventually smaller,
but single, interval of permissible values. From this interval
we could uniformly select a random value (that determines
the new values of Ge molar fractions at both vertices chosen
for an exchange). This is a possible method, but it would
be quite inefficient, especially near the minimum, as most
of the trial moves would be rejected for driving the solution
away from the minimum. It is beneficial to bias the moves
so that more likely accepted moves are generated. By a
suitable choice of the bias function α the performance can be
increased by orders of magnitude. In our method we find and
update a suitable bias function during the simulation. It would
be possible to make the whole scheme a valid MC scheme
sampling the desired distribution π at any T > 0, but, as we
only need to minimize our energy functional, we describe a
simplified version only. We start with a uniform bias function
α for all vertices and update this function by the addition of a
suitable kernel function (e.g., a Gaussian) centered at the value
achieved in the last step of the Markov chain. The kernel width
and the kernel weight (with which it is mixed with the old
bias function) should be positive, but otherwise can be rather
arbitrary and we use them as empirical tuning parameters. Not
to threaten the ergodicity, we keep the kernel width larger than
the desired final accuracy of the solution. The bias function
remains strictly positive everywhere upon updates and evolves
during the simulation to a kernel centered about the value at
minimum. As we need to effectively generate samples from α,
we approximate it conveniently (and in the spirit of the overall
FEM procedure) as a piecewise linear function.

To perform a calculation we now only need to specify
the geometry of an island and the overall Ge molar fraction;
create a mesh for local molar fractions; prescribe the energy
functional and set up its evaluation. The evaluation of E was
performed with a commercially available program package
COMSOL [19] using its structural mechanics module running
in a script mode on a pseudo-terminal under the UNIX
programming environment. This was called by our MC
program whenever a new value of the energy functional was
needed. An example of the concentration profile evolution
and convergence is shown in figure 1. From a practical
point of view a single energy evaluation by COMSOL for
a good quality FEM mesh with a system consisting of an
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Figure 1. Convergence of the Ge concentration profile during MC minimization for a triangle with aspect ratio of
√

2/2 and 60% of Ge. The
MC step corresponding to each configuration is indicated.

island and substrate takes about 15–30 s and, for a satisfactory
convergence of the composition profile with mesh points, about
10000 evaluations were needed (starting from the uniform
distribution). This performance can be improved. If the island
plus substrate geometry has some symmetry, the calculation
can be sped up by using only the minimum symmetry non-
equivalent part. For a typical case of an island with the shape
of a regular pyramid or which is dome-like [20, 21], this
immediately gives a factor near to 8 as for the number of mesh
points. Further acceleration can be achieved by less accurate
evaluation of the energy functional, by using coarser FEM
meshes when far from the minimum, or using a previous FEM
solution as the initial guess for the calculation of E after an
exchange (a relatively small change of the problem). Another
problem is the choice of the mesh points for the representation
of the concentration profile. This affects not only the accuracy
of the solution, but also the efficiency, as it is useless to make
the mesh too fine where a coarser mesh would give almost
the same results. A possible solution is to build the mesh
adaptively. This is shown in the following section together
with some basic results for model Ge/Si islands and ridges and
considering a simple free energy functional applied to more
realistically shaped islands.

3. Applications

The smallest Ge/Si nanoislands grown on the Si(001) substrate
usually have shapes of (105) pyramids (height to base aspect
ratio: 0.1). At later stages of the growth they undergo a
transformation to steeper (0.2 aspect ratio) domes [20–22]. The
simplest way to study their compositional profiles is to choose
the elastic energy as the functional to be minimized. Since
the energy release occurs not only via the bending of island
surfaces but also through the substrate deformation (where the
magnitude of the effect can be rather small but occurring in a
large volume), it is necessary to compute the elastic field both

in the island and in the substrate. In order to account accurately
for both contributions, we take the substrate large enough to
contain any elastic field modulation and we impose periodic
boundary conditions in the lateral directions, a fixed boundary
condition at the substrate bottom and leave free all other
surfaces. The anisotropic experimental material constants for
pure Si and Ge [23] are mixed according to Vegard’s law and
the initial strain ε is taken to be εi j = εmx(r)δi j , where
x(r) is the molar fraction of Ge, εm = 0.0399 is the lattice
mismatch and δ is the Kronecker delta. The comparison of
concentration profiles minimizing the total elastic energy for
(105) pyramids and infinite (105) ridges (effectively pyramids
in 2D) for average Ge content 40, 60 and 80% are shown in
figure 2. We show only the (010) cross sections and it is
necessary to keep in mind that while in the case of a ridge it
immediately shows the whole system, in the case of a pyramid,
the information is incomplete. In the case of a pyramid there
is also a geometrical factor implying that the higher the cross
section, the less of volume is represented. The most relevant
feature is that in all cases Ge prefers to stay at the top where it
can more easily relieve the strain due to the lattice mismatch.
In contrast Si is preferentially located near the bottom edges
where the most of the compressive stress is relieved. This
general view is compatible with many experimental results
including selective etching [5] of Ge and x-ray scattering [4].
For a higher Ge content a whole Ge rich region is obtained than
can be fully etched out, revealing the peculiar profiles shown
in [24].

In order to obtain a better insight into this behavior, we
show the corresponding maps of the elastic-energy density in
figure 3 for all the six cases considered. The situation for
uniform distribution of Ge for a pyramid and a ridge with
40% of Ge is also shown for a comparison. In the case
of pyramids, most of the energy due to the intermixing is
relieved at the bottom edges and the tip at a small expanse
at the bottom of an island near the center. While for
pyramids the tip is fully relaxed, this is not possible for ridges
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Figure 2. Minimum elastic-energy concentration profiles for (105) pyramids (left column) and ridges (right) with 40, 60 and 80% of Ge.

Figure 3. Elastic-energy density in meV/atom for (105) pyramids (left column) and ridges (right). The topmost left and right panels display
the simple case, of a uniform distribution, for a 40% Ge concentration. In all the others, the distribution providing elastic-energy minimization
is shown, for 40 (two panels below the uniform case), 60 and 80% average Ge content. Clearly, the FEM calculation yields volumetric energy
densities. The conversion in energy/atom is however more suitable for possible comparisons with atomistic approaches.

(effectively 2D pyramids) as there is always a constant non-
zero stress component along the [010] direction. This effect is
enhanced, with respect to the uniform-concentration case, by
the accumulation of Ge close to the apex.

In figure 4 we show how the mesh can be automatically
iteratively adapted to speed up the calculations by refining
the mesh only where it is needed. For simplicity we show a
2D case only. The refinement proceeds in several iterations,
starting with an arbitrarily coarse mesh and minimizing the
chosen energy functional. The mesh is then incrementally
refined where needed so that all elements are eliminated
that have an area larger than some predetermined limit (that

controls the minimum required spatial resolution), have too
small angle (that removes elements near to being degenerate),
or where the solution between the two previous iterations
changes by more than the convergence limit imposed on the
accuracy of the solution. The mesh adaptation shown in
figure 4 is based on the Delaunay triangulation refinement
algorithm [25].

As a final example we consider a simple functional for
the free energy. We want to minimize the Gibbs free energy
G = H − T S, where H is the enthalpy and S is the
entropy at constant pressure, temperature and total Ge content
with respect to the Ge concentration profile. The two main
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Figure 4. Four steps of mesh adaptation for 2D pyramids with minimum elastic energy and 60% of Ge.

contributions to G are believed [4] to be the elastic energy
and the entropy of mixing, hence for the change of G (with
respect to a hypothetical standard state of an unstressed solid
with separated Si and Ge) we can write

�G =
∫

I+S
W (r) dr + T k

∫
I
ρ(r)(x(r) log x(r)

+ (1 − x(r)) log(1 − x(r))) dr,

where W (r) is the elastic-energy density, k is the Boltzmann
constant, ρ(r) is local density of atoms and x(r) is the
molar fraction of Ge atoms (the formula is symmetrical
with respect to the exchange of atom types). This is the
generalization of a simpler formula (used, e.g., in [4]) valid
for uniform distribution x(r). The results for a dome shaped
island with 60% of Ge using the 3D experimental geometry
and several different values of temperature are shown in
figure 5. For T → +∞ the minimum of free energy
would go to the maximum entropy distribution that is uniform.
For a finite temperature the enthalpic term allows for some
compromise. The usual experimental temperature at which
intermixed Ge/Si nanoislands are grown is above 500 ◦C. The
experimentally observed Ge profile is fairly inhomogeneous
and resembles our profiles below 100 K [4, 5]. This suggests,
that the observed concentration profile is rather far from
thermodynamic equilibrium and is the likely result of a
competition between kinetic and thermodynamic effects. As
pointed out in [4], the entropy of mixing is larger than any
other contribution to G, being roughly up to kT log 2 per atom
for a 50% Ge island. This is much larger than the elastic-
energy contribution, reaching at most a few tens of meV/atom.
Although the free energy could be lowered by increased
intermixing, these high entropy states are not accessible in

Figure 5. Minimum free energy concentration profiles for domes
with 60% of Ge and the indicated temperatures.

experimental times due to the very slow (vanishing) bulk
diffusion [7]. In this respect, our model has the same
limitations of the above recalled atomistic MC approaches,
or of [16]. By allowing for Si/Ge exchanges within the
whole island one overestimates the entropic contribution. A
full understanding of island formation and evolution including
intermixing, ideally requires a kinetic model. While we feel
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that some important atomic-scale information is still missing
(for example, barriers for Si/Ge exchanges at the various
exposed facets of the islands have never been explored) for
developing such a model, a very interesting attempt to tackle
the whole complexity of the problem was recently presented
by Tu and Tersoff [26]. While keeping the comparison
between theory and experiments at a qualitative level, due to an
approximated evaluation of the strain fields and to a simplified
kinetic scheme, these authors were able to capture impressively
some of the key observed phenomenology.

4. Conclusions

In this paper we presented a very fast method for finding the
concentration profile minimizing the free energy of lattice-
mismatched heteroepitaxial islands. Since during the iterative
MC procedure the elastic problem is solved at each step, the
method is fully self-consistent. We applied our method to
SiGe/Si islands in 2D and 3D, and showed the role played
by entropy at finite temperatures. We wish to stress that a
full understanding of island formation and evolution including
intermixing, ideally requires a kinetic model allowing the
system to explore only the available configurational phase
space. In this respect, any thermodynamic treatment such
as the one here presented, where bulk diffusion is tacitly
assumed, is expected to overestimate the role of entropy. In
fact, the highly non-uniform concentration profiles found here
and in [15] at T = 0 K (elastic-energy minimization only)
seem to recover the experimental data much better. We find
this result very interesting, since it reveals that in SiGe/Si
systems the availability of fast diffusion channels at surfaces
only provides an efficient elastic-energy minimization channel,
while strongly frustrating entropy maximization.

Acknowledgments

We gratefully acknowledge the interesting scientific discus-
sions and encouragement provided by Professor Leo Miglio,
and financial support provided by the d-DOT-FET STREP
European project and by the Cariplo Foundation (SIMBAD
project).

References

[1] Denker U, Stoffel M and Schmidt O G 2003 Phys. Rev. Lett.
90 196102

[2] Malachias A, Kycia S, Medeiros-Ribeiro G,
Magalhaes-Paniago R, Kamins T I and Williams R S 2003
Phys. Rev. Lett. 91 176101

[3] Leite M S, Malachias A, Kycia S W, Kamins T I, Stanley
Williams R and Medeiros-Ribeiro G 2007 Phys. Rev. Lett.
98 165901

[4] Medeiros-Ribeiro G and Williams R S 2007 Nano Lett. 7 223
[5] Rastelli A, Stoffel M, Malachias A, Merdzhanova T,

Katsaros G, Kern K, Metzger T H and Schmidt O G 2008
Nano Lett. 8 1404

[6] Leite M S, Malachias A, Kycia S W, Kamins T I, Stanley
Williams R and Medeiros-Ribeiro G 2008 Phys. Rev. Lett.
100 226101

[7] Ratto F, Costantini G, Rastelli A, Schmidt O G, Kern K and
Rosei F 2006 J. Exp. Nanosci. 1 279

[8] Vastola G, Gatti R, Marzegalli A, Montalenti F and
Miglio L 2008 Self-Assembled Quantum Dots
ed Z M Wang (New York: Springer) pp 421–38

[9] Zipoli F, Cereda S, Ceriotti M, Bernasconi M, Miglio L and
Montalenti F 2008 Appl. Phys. Lett. 92 191908

[10] Tu Y and Tersoff J 2004 Phys. Rev. Lett. 93 216101
[11] Lang C, Cokayne D J H and Nguyen-Manh D 2005 Phys. Rev.

B 72 155328
[12] Kelires P C 2004 J. Phys.: Condens. Matter 16 S1485
[13] Sonnet P and Kelires P C 2004 Appl. Phys. Lett. 85 203
[14] Hadjisavvas G and Kelires P C 2005 Phys. Rev. B 72 075334
[15] Gatti R, Uhlı́k F and Montalenti F 2008 New J. Phys.

10 083039
[16] Madhekar N V, Hegadekatte V and Shenoy V B 2008 Phys.

Rev. Lett. 100 106104
[17] Allen M P and Tildesley D J 1989 Computer Simulation of

Liquids (New York: Clarendon)
[18] Kirkpatrick S, Gelatt C D and Vecchi M P 1983 Science

220 671
[19] COMSOL Multiphysics version 3.4.0.250 http://www.comsol.

com
[20] Medeiros-Ribeiro G, Bratkovski A M, Kamins T I,

Ohlberg D A A and Stanley Williams R 1998 Science
279 353

[21] Ross F M, Tromp R M and Reuter M C 1999 Science 286 1931
[22] Shchukin V A and Bimberg D 1999 Rev. Mod. Phys. 71 1125
[23] Lide D R (ed) 1998 Handbook of Chemistry and Physics

(Boca Raton, FL: CRC Press)
[24] Katsaros G, Costantini G, Stoffel M, Esteban R, Bittner A M,

Rastelli A, Denker U, Schmidt O G and Kern K 2005 Phys.
Rev. B 72 195320

[25] Shewchuk J R 2002 Comput. Geom., Theory Appl. 22 21
[26] Tu Y and Tersoff J 2007 Phys. Rev. Lett. 98 096103

6

http://dx.doi.org/10.1103/PhysRevLett.90.196102
http://dx.doi.org/10.1103/PhysRevLett.91.176101
http://dx.doi.org/10.1103/PhysRevLett.98.165901
http://dx.doi.org/10.1021/nl062530k
http://dx.doi.org/10.1021/nl080290y
http://dx.doi.org/10.1103/PhysRevLett.100.226101
http://dx.doi.org/10.1080/17458080600977782
http://dx.doi.org/10.1063/1.2926683
http://dx.doi.org/10.1103/PhysRevLett.93.216101
http://dx.doi.org/10.1103/PhysRevB.72.155328
http://dx.doi.org/10.1088/0953-8984/16/17/004
http://dx.doi.org/10.1063/1.1771452
http://dx.doi.org/10.1103/PhysRevB.72.075334
http://dx.doi.org/10.1088/1367-2630/10/8/083039
http://dx.doi.org/10.1103/PhysRevLett.100.106104
http://dx.doi.org/10.1126/science.220.4598.671
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://dx.doi.org/10.1126/science.279.5349.353
http://dx.doi.org/10.1126/science.286.5446.1931
http://dx.doi.org/10.1103/RevModPhys.71.1125
http://dx.doi.org/10.1103/PhysRevB.72.195320
http://dx.doi.org/10.1103/PhysRevLett.98.096103

	1. Introduction
	2. Methodology
	3. Applications
	4. Conclusions
	Acknowledgments
	References

